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1. INTRODUCTION 

NATURAL convection flow arising from a line thermal source 
at the leading edge of a vertical surface has been the subject 
of many recent investigations [l-7]. This configuration, also 
referred to as the wall plume [l], is often a convenient and 
accurate idealization of many electrical and electronic 
cooling applications. Such flows are also of importance in 
studies of boundary layer regimes in transport in enclosures. 

None of the studies so far has considered the transport in 
wall plume at asymptotically large or small Prandtl numbers. 
Many dielectric fluids used for immersion cooling of elec- 
trical and electronic equipment have Prandtl numbers larger 
than 10. The very low Prandtl numbers, at the other extreme, 
are characteristic of liquid metals. 

Natural convection at extreme Prandtl numbers has been 
investigated adequately for vertical surfaces. Kuiken [S] 
obtained solutions to O(Pr-“*) for large Prandtl number 
natural convection adjacent to a vertical isothermal surface. 
Matched asymptotic expansions were used to deal with the 
singular character of the transport equations. The same tech- 
nique was used by Kuiken [9] to obtain transport to 0 (Pr) 
for small Prandtl numbers. 

Kuiken and Rotem [lo] studied the flow above a line 
thermal source at asymptotically large and small Pr. Closed 
form expressions for the velocity and temperature were 
obtained to O(Pr- ‘) for large Pr. For small Pr, numerical 
calculations were made up to O(PrZ’3). 

In the following, an analysis of the wall plume for 
asymptotically large and small Pr has been carried out. It is 
shown that the nature of the transport differs significantly 
from the vertical surface and the line source plume. The 
asymptotically large Pr condition is studied in Section 2. The 
other extreme ofvanishingly small Pr is considered in Section 
3. The various computed quantities are discussed in Section 
4. Approximate correlations for transport, applicable for all 
Pr. have also been obtained. 

2. ASYMPTOTIC SOLUTION FOR LARGE Pr 

Consider the natural convection flow adjacent to a vertical 
surface with a line heat source along the leading edge. 
Governing equations with the boundary layer and Bous- 
sinesq approximations can be transformed into the following 
set of non-dimensional equations 

qY’+ YPr [f4]’ = 0 

where 

and 

f h) = cL(x, WC(~)> dh) = (t-Q/AT (3) 

g&x’AT “4 
tj = yb(x), c(x) = 4xb(x) = 4 ~ 

[ 1 4vz (4) 

In equations (3) and (4). AT is the downstream tem- 

perature decay along the surface for Pr = 1, given by 

Q4 1 
115 

AT= 
64p4v2C;gfi14_ 

x-3/5 (5) 

where 

I= 
s 

m f’ddn = 0.44712 
0 

is evaluated for Pr = 1 and Q is the strength of the line source 
per unit length. 

The boundary conditions for the solution of equations (1) 
and (2) are 

f(0) =.f'(O) =f'(co) = d'(O) = qqco) = 0 (6) 
and 

s 
mf’+dn=I. (7) 
0 

Note that this formulation of boundary conditions differs 
from ref. [3] in that d(O) # 1 except for Pr = 1. This results 
from a different choice of AT in equation (5) that is now 
independent cf Pr. 

For Pr >> 1, the following scaled quantities are introduced 
in the inner region : 

[ = PrZ’5 ‘1, F(g) = Pr’:’ f (1) and a([) = Pr-“’ 4(q). 

(8) 

Using equation (8) equations (1) and (2) are rewritten 

w + y [ml = 0. (10) 

Some of the boundary conditions, in addition to equation 
(7), are 

P(0) = F(O) = W(0) = 0. (11) 

The remaining conditions are to be found through matching 
with the outer flow. 

The appropriate transformations for the outer region 
become 

g= PC “” q and F(f) = Pr”l’f (q). (12) 

Equation (1) then becomes 

PC,+ +_ ;$,’ = 0 (13) 

with the boundary condition 

F(oo) = 0. (14) 

The remaining boundary conditions are to be found again 
through matching. 

2.1. Leading order transport 
The leading order or fundamental inner equations are 

obtained by setting Pr = co in equation (9). These are 

&“+a, = 0 (15) 
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NOMENCLATURE 

C, specific heat of fluid 
f nondimensional stream function, defined in 

equation (3) 
F transformed stream function for large Prandtl 

number 
9 acceleration due to gravity 
Pr fluid Prandtl number 
Q strength of line source per unit length 
t temperature 
AT downstream temperature decay for Y = 0 and 

Pr = 1 from equation (5) 
u component of velocity parallel to surface 
” component of velocity normal to surface 
V transformed stream function for small Prandtl 

number 
x downstream distance from the heat source 
Y normal distance from the heat source. 

Greek symbols 

; 
thermal diffusivity 
coefficient of thermal expansion 

5 stretched horizontal coordinate for small Pr 
11 non-dimensional horizontal coordinate given in 

equation (4) 
6 non-dimensional temperature for small Pr 

kinematic viscosity 
; stretched horizontal coordinate for large Pr 
p density 
f#J non-dimensional temperature defined in equation 

(3) 
CJ non-dimensional temperature for large Pr 
JI stream function. 

Subscripts 
03 ambient 
C composite. 

Superscripts 
- function or variable in the inner region 
- function or variable in the outer region. 

@Jo” + ‘52 [~&)]’ = 0. (16) and 
(26) 

The zero order outer transport is governed by 

12 4 
fr+ -fl$;- -&Z = 0. 

The boundary conditions are 

5 5 (17) 

The additional boundarv conditions needed for the solution 
$0) =d&) and F,(O) = :_i F,(F)-z$k’({) 

> 
of equations (ISt( 17) are obtained next. The matching con- 
dition requires [l l] 

lim F(g) = Pr”’ lima([). 
E-m E-0 (“) and 

This results in 

(27) 

s(m) = FO(0) = 0 and 
9 

dFO 
(0) = ,,(aJ). (19) 

Y(O) = p_r [d&-[d&)1. (28) 

Similarly, the matching of temperature yields 
Equations (24) and (25) can now be integrated subject to 

conditions given by equations (ll), (27) and the following 

5(co) = 0. (20) 
requirement on the energy integral : 

Equations (15) and (16) can now be integrated subject to 
the boundary conditions given in equations (II), (19) and 
(7). Equation (17) is next solved subject to conditions in 

s 
m (P;$,+&@,)d[= 0. (29) 

0 

equations (19) and (14). Equation (26) is then solved subject to conditions provided 
in equations (14) and (28). 

2.2. First order transport 
In many applications, the fluid Prandtl number is only 

moderately large. This is true of many commonly used 
liquids, such as water and some dielectric fluids. To extend 
the accuracy of the present computations to such fluids, 
the first order corrections to the transport have also been 
obtained. 

The inner and outer expansions to first order are 

F(e) = FO([)+Pr-‘12F,({) 

W) = WO+pr-“2%(0 

and 

(21) 

(22) 

p(r) = PO(E) + Pr- ‘/*P,(P). (23) 

Substituting these in equations (9), (10) and (13) and col- 
lecting terms of the order Pr- ‘1’ 

iy+a, = 0 (24) 

W+ +%+F,bb+&B,+P;&,] = 0 (25) 

3. ASYMPTOTIC SOLUTION FOR SMALL 
PRANDTL NUMBERS 

For Pr cc 1, the thermal boundary layer is much thicker 
than the momentum boundary layer. The viscous effects are 
now confined within a thin layer adjacent to the surface. 
Over most of the outer region, the flow is inviscid to the 
leading order. In this region, the buoyancy and inertia forces 
balance. 

The appropriate transformations for the outer region are 

f = Pr3” q, P(c) = Pr2j5 f(q) and g(c) = Pr- *” 4(q). 

(30) 

Using the above transformations, equations (1) and (2) 
are rewritten in the outer region 

12 4 prP”‘+_~~f-_fm+g=() 
5 5 (31) 

(32) 
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Table 1. Computed transport quantities 

Pr >> 1 
&‘(O) = 0.9609 -0.2424 

2;; f to.4541 

G,(O) = 0.7016 
Ir;l(O) 

E;‘(O) = g,(O) = 0.2659 
= 0.7646 -0.7943 

p;(O) 
&‘(O) = 

= 0.6166 p;‘(O) = 
&(ao) = 0.6136 

-0.5035 &co) = 5.8136x lo-’ 
Pr << 1 

u;;(O) = 1.4222 
p,(co) = 

B,(O) = 0.9577 
0.6533 

The imposed boundary conditions are 

p*(co) = Qico) = 0. (33) 

The inner layer transformations are 

I= Pr”“‘?, p(c) = Pr-““f(q) and 8(e) = Prm2”~(q). 

(34) 

Equations (1) and (2) are then rewritten for the inner region 

12__ 4- p”‘+_~yy”-_~2+@=0 
5 5 (35) 

P~+~Pr(w+y’B)=o. (36) 

The boundary conditions known at this stage are 

V(0) = V(O) = F(O) = 0. (37) 

It is noted that the second condition in equation (37) 
differs from those for the line plume [lo]. The leading order 
outer solutions are next obtained by setting Pr = 0 in aqua- 
tion (31). In order to achieve matching with the inner 
solution, expansions in powers of [ are required for p&) 
and &,(e) near g = 0. These are 

P&P) = AL+ WY’) (38) 

0.45 r 

&(Bi = 4? i-O@?) (39) 

where A, is to be determined numerically. 
Matching with the inner solution and allowing the integral 

in equation (12) to have a finite contribution, results in the 
following additional boundary conditions : 

m ?,,(O) = 0 and 
f 

p&, de = I. (40) 
rJ 

Equations (31) and (32) can now be solved subject to 
conditions in equations (33) and (40). This yields 
A, = 1.0941. 

By setting Pr = 0 in equation (36) and using equation (37), 
it is clear that the inner region is isothermal to the bading 
order. Matc~ng of tern~m~~ and velocity further requires 

&=$ and ~o(co)=Ao. (41) 

Equation (35) can now be solved for I’,([) subject to 
conditions provided by equations (37) and (41). 

Pr = 6.7 

Ftc. 1. Comparison of the two-term composite velocity and temperature functions with numerical solution 
of the boundary layer equations, for Pr = 6.7. 
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4. COMPUTATIONS AND RESULTS 

The non-dimensional velocity and temperature functions 
in Sections 2 and 3 have been computed. These are available 
in ref. [12]. The important transport quantities are collected 
in Table 1 both for Pr >> 1 and Pr c 1. 

The two-term composite tangential velocity function is 
obtained as (see ref. [l 1)) 

Since the outer region is isothermal, the composite tem- 
perature profile is simply 

I& = Prp’5(~O(F)+Pr-“2~,(0). (43) 

The composite velocity and temperature equations (42) 
and (43) are seen in Fig. 1, for Pr = 6.7. Also shown for 
comparison are the computed profiles from integrating equa- 
tions (1) and (2). Even though the Prandtl number is only 
moderately large, the agreement is good. A similar com- 
parison of the small Prandtl number, one-term inner and 
outer functions, with the numerical solution of equations (1) 
and (2) is seen in Fig. 2 for Pr = 0.01. Again, the numerical 
solutions tend to approach the asymptotic profiles. 

4.1. Approximate transport correlations for all Pr 
The results of the analysis in Sections 2 and 3 are next 

used to obtain approximate expressions for various transport 
quantities, valid for all Pr. Such correlations are obtained 
using the technique proposed by Churchill and Usagi [13]. 
This technique utilizes a suitable combination of the two 
asymptotic limits of a function, to construct a universal 
correlation. 

The resulting expression for the non-dimensional surface 
temperature is 

d(O) = 0.7016Pr 

It is found [12] that for extreme values of Pr, the limiting 
expressions obtained in Sections 2 and 3 are more accurate 
than equation (44). However, equation (44) provides esti- 
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mates of 4(O) for ah Pr, with a maximum error of about 2%. 
Approximate expressions for the nondimensional surface 

shear stress and the mass flow rate are constructed in an 
identical manner. There are 

f"(0) = ((0.9609Pr”‘)-4 6+(l.4222Pr3”o)-4~6)-o~217 (45) 

and 

f(a) = ((0.6533Pr-2’5)3~4+(0.6136Pr-‘~‘o)3~4)o~294. 

(46) 

The use of equations (44)-(46) allows the evaluation of 
various transport quantities without the complete inte- 
gration of the governing equations, for any Pr. 

5. CONCLUSIONS 

Transport in a wall plume at asymptotically large and 
small Prandtl numbers exhibits differences from vertical sur- 
faces and the line plume. At very high Prandtl numbers, this 
results from a different set of scaling requirements. Unlike 
the vertical surface, the wall plume requires conservation of 
the total convected energy. Also, unlike the line plume, the 
tangential velocity now must vanish at the surface. For very 
low Pr, the scaling requirements are identical to those in the 
line plume. The difference in transport now results purely 
from changed boundary conditions at the surface. The use 
of the matched asymptotic expansions technique allows 
examination of the entire flow and transport region. Trans- 
port quantities of practical importance have been obtained in 
the form of correlations, where Pr occurs as a multiplicative 
function. 
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INTRODUCTION 

MANY PROBLEMS arise in engineering in which heat transfer 
is accompanied by melting and solidification (phase change). 
The situation is particularly common in materials processing, 
e.g. welding, casting, heat treatment, crystal growth, etc. The 
work described in this note has been motivated by appli- 
cation to TIG (tungsten inert gas) or GTA (gas tungsten arc) 
welding processes [l]. The situation is described schema- 
tically in Fig. 1. A source of heat (arc) moves laterally 
over the surface of a plate to be welded. Due to intense 
heating, the material under the arc melts and, as the arc 
moves away, the material resolidifies resulting in a welded 
joint. 

In this technical note a fixed grid numerical methodology 
is presented for solving phase change problems involving a 
moving heat source. The spirit of the paper is to emphasize 
only on the methodology and illustrate the procedure via 
a two-dimensional example; the solution for a complete 
three-dimensional TIG problem including the flow in the 
melt due to buoyancy, surface tension and electromagnetic 
forces, etc. is the subject of a separate paper [2] targeted for 
the material sciences community. 

Viewed in the laboratory coordinates, the arc problem 
described in Fig. 1 is inherently unsteady. However, if one 
works with a coordinate system fixed to the arc, then the 
problem becomes steady, assuming the plate length to be 
infinite in the direction of arc motion. This note deals with 
such a steady state problem only ; thus the arc and the melt 
under it are fixed in space while material enters and leaves 
the computational domain. 

THE PROPOSED PHASECHANGE 
METHODOLOGY 

There are two approaches to solving phase change prob- 
lems. The classical problem requires tracking of the phase 
change front by the satisfaction of the Stefan condition. 
This is often implemented computationally by deforming 
grid techniques, For steady state problems, this procedure 

would involve adjusting the grid ‘iteratively’ until the appro- 
priate interface conditions have been satisfied. 

Alternatively, the ‘weak’ or integral formulation of the 
Stefan problem leads to enthalpy methods which employ 
fixed grids. The technique proposed here falls into this second 
class. An important attribute of this method is its ease of 
implementation. The scheme has evolved from the recent 
work of Voller et al. [3,4] and the concurrent work of Voller 
and Prakash [5]. 

The basic idea is to represent the total enthalpy as a sum 
of sensible and latent heats, i.e. 

where 

h=c,T (2) 

cp being the specific heat and T the temperature. The latent 
heat, AH, is constrained by the limits 

O<AH$L (3) 

where L represents the total latent heat of fusion. Thus, 
at any point, the value of AH has the following physical 
interpretation : 

AH 
solid fraction = 1 - L. (5) 

The energy conservation equation for steady situation can 
be written as 

V.(puH) = V* 

where p represents the density, u the material velocity and k 
and cp are the thermal conductivity and specific heat of the 
material, respectively. Substituting equation (1) into equa- 


